Computing an Eigenvector with Inverse Iteration
نویسنده
چکیده
The purpose of this paper is two-fold: to analyze the behavior of inverse iteration for computing a single eigenvector of a complex square matrix and to review Jim Wilkinson’s contributions to the development of the method. In the process we derive several new results regarding the convergence of inverse iteration in exact arithmetic. In the case of normal matrices we show that residual norms decrease strictly monotonically. For eighty percent of the starting vectors a single iteration is enough. In the case of non-normal matrices, we show that the iterates converge asymptotically to an invariant subspace. However, the residual norms may not converge. The growth in residual norms from one iteration to the next can exceed the departure of the matrix from normality. We present an example where the residual growth is exponential in the departure of the matrix from normality. We also explain the often significant regress of the residuals after the first iteration: it occurs when the non-normal part of the matrix is large compared to the eigenvalues of smallest magnitude. In this case computing an eigenvector with inverse iteration is exponentially ill conditioned (in exact arithmetic). We conclude that the behavior of the residuals in inverse iteration is governed by the departure of the matrix from normality rather than by the conditioning of a Jordan basis or the defectiveness of eigenvalues.
منابع مشابه
An inverse iteration method for eigenvalue problems with eigenvector nonlinearities
Abstract. Consider a symmetric matrix A(v) ∈ Rn×n depending on a vector v ∈ Rn and satisfying the property A(αv) = A(v) for any α ∈ R\{0}. We will here study the problem of finding (λ, v) ∈ R × Rn\{0} such that (λ, v) is an eigenpair of the matrix A(v) and we propose a generalization of inverse iteration for eigenvalue problems with this type of eigenvector nonlinearity. The convergence of the ...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملA Geometric Theory for Preconditioned Inverse Iteration Ii: Convergence Estimates
The topic of this paper is a convergence analysis of preconditioned inverse iteration (PINVIT). A sharp estimate for the eigenvalue approximations is derived; the eigenvector approximations are controlled by an upper bound for the residual vector. The analysis is mainly based on extremal properties of various quantities which define the geometry of PINVIT.
متن کاملA STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کاملInverse Iteration on Defective Matrices
Very often, inverse iteration is used with shifts to accelerate convergence to an eigenvector. In this paper, it is shown that, if the eigenvalue belongs to a nonlinear elementary divisor, the vector sequences may diverge even when the shift sequences converge to the eigenvalue. The local behavior is discussed through a 2 X 2 example, and a sufficient condition for the convergence of the vector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 39 شماره
صفحات -
تاریخ انتشار 1997